Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
1.
Cancer Res Commun ; 4(3): 834-848, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451783

RESUMO

Current treatment options for metastatic adrenocortical carcinoma (ACC) have limited efficacy, despite the common use of mitotane and cytotoxic agents. This study aimed to identify novel therapeutic options for ACC. An extensive drug screen was conducted to identify compounds with potential activity against ACC cell lines. We further investigated the mechanism of action of the identified compound, TAK-243, its synergistic effects with current ACC therapeutics, and its efficacy in ACC models including patient-derived organoids and mouse xenografts. TAK-243, a clinical ubiquitin-activating enzyme (UAE) inhibitor, showed potent activity in ACC cell lines. TAK-243 inhibited protein ubiquitination in ACC cells, leading to the accumulation of free ubiquitin, activation of the unfolded protein response, and induction of apoptosis. TAK-243 was found to be effluxed out of cells by MDR1, a drug efflux pump, and did not require Schlafen 11 (SLFN11) expression for its activity. Combination of TAK-243 with current ACC therapies (e.g., mitotane, etoposide, cisplatin) produced synergistic or additive effects. In addition, TAK-243 was highly synergistic with BCL2 inhibitors (Navitoclax and Venetoclax) in preclinical ACC models including patient-derived organoids. The tumor suppressive effects of TAK-243 and its synergistic effects with Venetoclax were further confirmed in a mouse xenograft model. These findings provide preclinical evidence to support the initiation of a clinical trial of TAK-243 in patients with advanced-stage ACC. TAK-243 is a promising potential treatment option for ACC, either as monotherapy or in combination with existing therapies or BCL2 inhibitors. SIGNIFICANCE: ACC is a rare endocrine cancer with poor prognosis and limited therapeutic options. We report that TAK-243 is active alone and in combination with currently used therapies and with BCL2 and mTOR inhibitors in ACC preclinical models. Our results suggest implementation of TAK-243 in clinical trials for patients with advanced and metastatic ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Pirazóis , Pirimidinas , Sulfetos , Sulfonamidas , Humanos , Animais , Camundongos , Carcinoma Adrenocortical/tratamento farmacológico , Mitotano , Xenoenxertos , Enzimas Ativadoras de Ubiquitina/uso terapêutico , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Organoides , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Proteínas Nucleares/uso terapêutico
2.
Mol Cancer Ther ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466804

RESUMO

Ataxia Telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA damaging agents (DDAs). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small-cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag (TMT)-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2/M-progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.

4.
Mol Carcinog ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411275

RESUMO

Homologous recombination (HR) and poly ADP-ribosylation are partially redundant pathways for the repair of DNA damage in normal and cancer cells. In cell lines that are deficient in HR, inhibition of poly (ADP-ribose) polymerase (poly (ADP-ribose) polymerase [PARP]1/2) is a proven target with several PARP inhibitors (PARPis) currently in clinical use. Resistance to PARPi often develops, usually involving genetic alterations in DNA repair signaling cascades, but also metabolic rewiring particularly in HR-proficient cells. We surmised that alterations in metabolic pathways by cancer drugs such as Olaparib might be involved in the development of resistance to drug therapy. To test this hypothesis, we conducted a metabolism-focused clustered regularly interspaced short palindromic repeats knockout screen to identify genes that undergo alterations during the treatment of tumor cells with PARPis. Of about 3000 genes in the screen, our data revealed that mitochondrial pyruvate carrier 1 (MPC1) is an essential factor in desensitizing nonsmall cell lung cancer (NSCLC) lung cancer lines to PARP inhibition. In contrast to NSCLC lung cancer cells, triple-negative breast cancer cells do not exhibit such desensitization following MPC1 loss and reprogram the tricarboxylic acid cycle and oxidative phosphorylation pathways to overcome PARPi treatment. Our findings unveil a previously unknown synergistic response between MPC1 loss and PARP inhibition in lung cancer cells.

5.
Cell Cycle ; 23(2): 115-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38341866

RESUMO

Humans have two Type IA topoisomerases, topoisomerase IIIα (TOP3A) and topoisomerase IIIß (TOP3B). In this review, we focus on the role of human TOP3A in DNA replication and highlight the recent progress made in understanding TOP3A in the context of replication. Like other topoisomerases, TOP3A acts by a reversible mechanism of cleavage and rejoining of DNA strands allowing changes in DNA topology. By cleaving and resealing single-stranded DNA, it generates TOP3A-linked single-strand breaks as TOP3A cleavage complexes (TOP3Accs) with a TOP3A molecule covalently bound to the 5´-end of the break. TOP3A is critical for both mitochondrial and for nuclear DNA replication. Here, we discuss the formation and repair of irreversible TOP3Accs, as their presence compromises genome integrity as they form TOP3A DNA-protein crosslinks (TOP3A-DPCs) associated with DNA breaks. We discuss the redundant pathways that repair TOP3A-DPCs, and how their defects are a source of DNA damage leading to neurological diseases and mitochondrial disorders.


Assuntos
Reparo do DNA , Replicação do DNA , DNA Topoisomerases Tipo I , Humanos , DNA Topoisomerases Tipo I/metabolismo , Animais
6.
Mol Cell Biol ; 44(2): 43-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347726

RESUMO

Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.


Assuntos
Neoplasias Colorretais , Transcriptoma , Masculino , Humanos , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Neoplasias Colorretais/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Sci Adv ; 9(49): eadi6681, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055811

RESUMO

Type II topoisomerases (TOP2) form transient TOP2 cleavage complexes (TOP2ccs) during their catalytic cycle to relieve topological stress. TOP2ccs are covalently linked TOP2-DNA intermediates that are reversible but can be trapped by TOP2 poisons. Trapped TOP2ccs block transactions on DNA and generate genotoxic stress, which are the mechanisms of action of TOP2 poisons. How cells avoid TOP2cc accumulation remains largely unknown. In this study, we uncovered RAD54 like 2 (RAD54L2) as a key factor that mediates a TOP2-specific DNA damage avoidance pathway. RAD54L2 deficiency conferred unique sensitivity to treatment with TOP2 poisons. RAD54L2 interacted with TOP2A/TOP2B and ZATT/ZNF451 and promoted the turnover of TOP2 from DNA with or without TOP2 poisons. Additionally, inhibition of proteasome activity enhanced the chromatin binding of RAD54L2, which in turn led to the removal of TOP2 from chromatin. In conclusion, we propose that RAD54L2-mediated TOP2 turnover is critically important for the avoidance of potential TOP2-linked DNA damage under physiological conditions and in response to TOP2 poisons.


Assuntos
Venenos , DNA Topoisomerases Tipo II/genética , Dano ao DNA , Reparo do DNA , DNA/química , Cromatina/genética
8.
Nat Commun ; 14(1): 7524, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980342

RESUMO

TOP3B is stabilized by TDRD3. Hypothesizing that TDRD3 recruits a deubiquitinase, we find that TOP3B interacts with USP9X via TDRD3. Inactivation of USP9X destabilizes TOP3B, and depletion of both TDRD3 and USP9X does not promote further TOP3B ubiquitylation. Additionally, we observe that MIB1 mediates the ubiquitylation and proteasomal degradation of TOP3B by directly interacting with TOP3B independently of TDRD3. Combined depletion of USP9X, TDRD3 and MIB1 causes no additional increase in TOP3B levels compared to MIB1 knockdown alone indicating that the TDRD3-USP9X complex works downstream of MIB1. To comprehend why cells degrade TOP3B in the absence of TDRD3, we measured TOP3Bccs. Lack of TDRD3 increases TOP3Bccs in DNA and RNA, and induced R-loops, γH2AX and growth defect. Biochemical experiments confirm that TDRD3 increases the turnover of TOP3B. Our work provides molecular insights into the mechanisms by which TDRD3 protect cells from deleterious TOP3Bccs which are otherwise removed by TRIM41.


Assuntos
Ubiquitina Tiolesterase , Linhagem Celular Tumoral , Ubiquitinação , Ubiquitina Tiolesterase/metabolismo
9.
Nucleic Acids Res ; 51(20): 10846-10866, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850658

RESUMO

Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.


Assuntos
Adutos de DNA , Poliaminas , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Conformação de Ácido Nucleico , Poliaminas/química , Poliaminas/metabolismo
10.
JAMA Oncol ; 9(12): 1669-1677, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824137

RESUMO

Importance: Patients with relapsed small cell lung cancer (SCLC), a high replication stress tumor, have poor prognoses and few therapeutic options. A phase 2 study showed antitumor activity with the addition of the ataxia telangiectasia and Rad3-related kinase inhibitor berzosertib to topotecan. Objective: To investigate whether the addition of berzosertib to topotecan improves clinical outcomes for patients with relapsed SCLC. Design, Setting, and Participants: Between December 1, 2019, and December 31, 2022, this open-label phase 2 randomized clinical trial recruited 60 patients with SCLC and relapse after 1 or more prior therapies from 16 US cancer centers. Patients previously treated with topotecan were not eligible. Interventions: Eligible patients were randomly assigned to receive topotecan alone (group 1), 1.25 mg/m2 intravenously on days 1 through 5, or with berzosertib (group 2), 210 mg/m2 intravenously on days 2 and 5, in 21-day cycles. Randomization was stratified by tumor sensitivity to first-line platinum-based chemotherapy. Main Outcomes and Measures: The primary end point was progression-free survival (PFS) in the intention-to-treat population. Secondary end points included overall survival (OS) in the overall population and among patients with platinum-sensitive or platinum-resistant tumors. The PFS and OS for each treatment group were estimated using the Kaplan-Meier method. The log-rank test was used to compare PFS and OS between the 2 groups, and Cox proportional hazards models were used to estimate the treatment hazard ratios (HRs) and the corresponding 2-sided 95% CI. Results: Of 60 patients (median [range] age, 59 [34-79] years; 33 [55%] male) included in this study, 20 were randomly assigned to receive topotecan alone and 40 to receive a combination of topotecan with berzosertib. After a median (IQR) follow-up of 21.3 (18.1-28.3) months, there was no difference in PFS between the 2 groups (median, 3.0 [95% CI, 1.2-5.1] months for group 1 vs 3.9 [95% CI, 2.8-4.6] months for group 2; HR, 0.80 [95% CI, 0.46-1.41]; P = .44). Overall survival was significantly longer with the combination therapy (5.4 [95% CI, 3.2-6.8] months vs 8.9 [95% CI, 4.8-11.4] months; HR, 0.53 [95% CI, 0.29-0.96], P = .03). Adverse event profiles were similar between the 2 groups (eg, grade 3 or 4 thrombocytopenia, 11 of 20 [55%] vs 20 of 40 [50%], and any grade nausea, 9 of 20 [45%] vs 14 of 40 [35%]). Conclusions and Relevance: In this randomized clinical trial, treatment with berzosertib plus topotecan did not improve PFS compared with topotecan therapy alone among patients with relapsed SCLC. However, the combination treatment significantly improved OS. Trial Registration: ClinicalTrials.gov Identifier: NCT03896503.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Carcinoma de Pequenas Células do Pulmão/patologia , Topotecan/efeitos adversos , Neoplasias Pulmonares/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Recidiva
11.
Nucleic Acids Res ; 51(18): e97, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670571

RESUMO

Topoisomerases (TOP1, TOP2α, and ß) are nuclear enzymes crucial for virtually all aspects of DNA metabolisms. They also are the targets of important anti-tumor chemotherapeutics that act by trapping the otherwise reversible topoisomerase-DNA covalent complex intermediates (TOPccs) that are formed during their catalytic reactions, resulting in long-lived topoisomerase DNA-protein crosslinks (TOP-DPCs) that interfere with DNA transactions. The Poly(ADP-ribose) polymerase (PARP) family protein PARP1 is activated by DNA damage to recruit DNA repair proteins, and PARP inhibitors are another class of commonly used chemotherapeutics, which bind and trap PARP molecules on DNA. To date, the trapping of TOPccs and PARP by their respective inhibitors can only be measured by immune-biochemical methods in cells. Here, we developed an imaging-based approach enabling real-time monitoring of drug-induced trapping of TOPccs and PARP1 in live cells at the single-molecule level. Capitalizing on this approach, we calculated the fraction of self-fluorescence tag-labeled topoisomerases and PARP single-molecules that are trapped by their respective inhibitors in real time. This novel technique should help elucidate the molecular processes that repair TOPcc and PARP trapping and facilitate the development of novel topoisomerase and PARP inhibitor-based therapies.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Dano ao DNA , Reparo do DNA , Isomerases/genética , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo
12.
Neurooncol Adv ; 5(1): vdad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706203

RESUMO

Background: Deletions or loss-of-function mutations in phosphatase and tensin homolog (PTEN) are common in glioblastoma (GBM) and have been associated with defective DNA damage repair. Here we investigated whether PTEN deficiency presents a vulnerability to a simultaneous induction of DNA damage and suppression of repair mechanisms by combining topoisomerase I (TOP1) and PARP inhibitors. Methods: Patient-derived GBM cells and isogenic PTEN-null and PTEN-WT glioma cells were treated with LMP400 (Indotecan), a novel non-camptothecin TOP1 inhibitor alone and in combination with a PARP inhibitor, Olaparib or Niraparib. RNAseq analysis was performed to identify treatment-induced dysregulated pathways. Results: We found that GBM cells lacking PTEN expression are highly sensitive to LMP400; however, rescue of the PTEN expression reduces sensitivity to the treatment. Combining LMP400 with Niraparib leads to synergistic cytotoxicity by inducing G2/M arrest, DNA damage, suppression of homologous recombination-related proteins, and activation of caspase 3/7 activity significantly more in PTEN-null cells compared to PTEN-WT cells. LMP400 and Niraparib are not affected by ABCB1 and ABCG2, the major ATP-Binding Cassette (ABC) drug efflux transporters expressed at the blood-brain barrier (BBB), thus suggesting BBB penetration which is a prerequisite for potential brain tumor treatment. Animal studies confirmed both an anti-glioma effect and sufficient BBB penetration to prolong survival of mice treated with the drug combination. Conclusions: Our findings provide a proof of concept for the combined treatment with LMP400 and Niraparib in a subset of GBM patients with PTEN deficiency.

13.
NAR Cancer ; 5(1): zcad013, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37600974

RESUMO

R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.

14.
Proc Natl Acad Sci U S A ; 120(34): e2218483120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579177

RESUMO

We designed and carried out a high-throughput screen for compounds that trap topoisomerase III beta (TOP3B poisons) by developing a Comparative Cellular Cytotoxicity Screen. We found a bisacridine compound NSC690634 and a thiacyanine compound NSC96932 that preferentially sensitize cell lines expressing TOP3B, indicating that they target TOP3B. These compounds trap TOP3B cleavage complex (TOP3Bcc) in cells and in vitro and predominately act on RNA, leading to high levels of RNA-TOP3Bccs. NSC690634 also leads to enhanced R-loops in a TOP3B-dependent manner. Preliminary structural activity studies show that the lengths of linkers between the two aromatic moieties in each compound are critical; altering the linker length completely abolishes the trapping of TOP3Bccs. Both of our lead compounds share a similar structural motif, which can serve as a base for further modification. They may also serve in anticancer, antiviral, and/or basic research applications.


Assuntos
DNA Topoisomerases Tipo I , Inibidores da Topoisomerase I , Linhagem Celular , DNA Topoisomerases Tipo I/metabolismo , RNA , Inibidores da Topoisomerase I/química
15.
EMBO Mol Med ; 15(8): e17313, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491889

RESUMO

Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Recidiva Local de Neoplasia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
16.
Mol Cell Proteomics ; 22(8): 100602, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343696

RESUMO

Treatment and relevant targets for breast cancer (BC) remain limited, especially for triple-negative BC (TNBC). We identified 6091 proteins of 76 human BC cell lines using data-independent acquisition (DIA). Integrating our proteomic findings with prior multi-omics datasets, we found that including proteomics data improved drug sensitivity predictions and provided insights into the mechanisms of action. We subsequently profiled the proteomic changes in nine cell lines (five TNBC and four non-TNBC) treated with EGFR/AKT/mTOR inhibitors. In TNBC, metabolism pathways were dysregulated after EGFR/mTOR inhibitor treatment, while RNA modification and cell cycle pathways were affected by AKT inhibitor. This systematic multi-omics and in-depth analysis of the proteome of BC cells can help prioritize potential therapeutic targets and provide insights into adaptive resistance in TNBC.


Assuntos
Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteômica , Proliferação de Células , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores ErbB/metabolismo
17.
Nat Commun ; 14(1): 3762, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353483

RESUMO

Colorectal cancers (CRCs) are prevalent worldwide, yet current treatments remain inadequate. Using chemical genetic screens, we identify that co-inhibition of topoisomerase I (TOP1) and NEDD8 is synergistically cytotoxic in human CRC cells. Combination of the TOP1 inhibitor irinotecan or its bioactive metabolite SN38 with the NEDD8-activating enzyme inhibitor pevonedistat exhibits synergy in CRC patient-derived organoids and xenografts. Mechanistically, we show that pevonedistat blocks the ubiquitin/proteasome-dependent repair of TOP1 DNA-protein crosslinks (TOP1-DPCs) induced by TOP1 inhibitors and that the CUL4-RBX1 complex (CRL4) is a prominent ubiquitin ligase acting on TOP1-DPCs for proteasomal degradation upon auto-NEDD8 modification during replication. We identify DCAF13, a DDB1 and Cullin Associated Factor, as the receptor of TOP1-DPCs for CRL4. Our study not only uncovers a replication-coupled ubiquitin-proteasome pathway for the repair of TOP1-DPCs but also provides molecular and translational rationale for combining TOP1 inhibitors and pevonedistat for CRC and other types of cancers.


Assuntos
Neoplasias Colorretais , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ligases/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a RNA
18.
Cancers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37296836

RESUMO

Adrenocortical cancer is an aggressive endocrine malignancy with an incidence of 0.72 to 1.02 per million people/year, and a very poor prognosis with a five-year survival rate of 22%. As an orphan disease, clinical data are scarce, meaning that drug development and mechanistic research depend especially on preclinical models. While a single human ACC cell line was available for the last three decades, over the last five years, many new in vitro and in vivo preclinical models have been generated. Herein, we review both in vitro (cell lines, spheroids, and organoids) and in vivo (xenograft and genetically engineered mouse) models. Striking leaps have been made in terms of the preclinical models of ACC, and there are now several modern models available publicly and in repositories for research in this area.

19.
Cancer Res ; 83(12): 1941-1952, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140427

RESUMO

Major advances have been made in the field of precision medicine for treating cancer. However, many open questions remain that need to be answered to realize the goal of matching every patient with cancer to the most efficacious therapy. To facilitate these efforts, we have developed CellMinerCDB: National Center for Advancing Translational Sciences (NCATS; https://discover.nci.nih.gov/rsconnect/cellminercdb_ncats/), which makes available activity information for 2,675 drugs and compounds, including multiple nononcology drugs and 1,866 drugs and compounds unique to the NCATS. CellMinerCDB: NCATS comprises 183 cancer cell lines, with 72 unique to NCATS, including some from previously understudied tissues of origin. Multiple forms of data from different institutes are integrated, including single and combination drug activity, DNA copy number, methylation and mutation, transcriptome, protein levels, histone acetylation and methylation, metabolites, CRISPR, and miscellaneous signatures. Curation of cell lines and drug names enables cross-database (CDB) analyses. Comparison of the datasets is made possible by the overlap between cell lines and drugs across databases. Multiple univariate and multivariate analysis tools are built-in, including linear regression and LASSO. Examples have been presented here for the clinical topoisomerase I (TOP1) inhibitors topotecan and irinotecan/SN-38. This web application provides both substantial new data and significant pharmacogenomic integration, allowing exploration of interrelationships. SIGNIFICANCE: CellMinerCDB: NCATS provides activity information for 2,675 drugs in 183 cancer cell lines and analysis tools to facilitate pharmacogenomic research and to identify determinants of response.


Assuntos
National Center for Advancing Translational Sciences (U.S.) , Neoplasia de Células Basais , Estados Unidos , Humanos , Farmacogenética , Linhagem Celular Tumoral , Bases de Dados Factuais , Irinotecano , Internet
20.
Hum Mol Genet ; 32(15): 2422-2440, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37129502

RESUMO

The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , DNA Mitocondrial/genética , Imunidade Inata/genética , Interferons , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...